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We study a one-dimensional model describing buoyancy-driven laminar steady flow
of a glass melt in a closed loop under the influence of a localized electromagnetic
(Lorentz) force. The loop is a highly simplified representation of a closed streamline in
glass melt flow in a real furnace under the influence of an artificially produced Lorentz
force. The model is based on the energy equation for the temperature and the Stokes
equation for the velocity distribution inside the loop. We take into account the full
nonlinear temperature dependence of the viscosity and the electrical conductivity of
the melt. The three-dimensional problem is then reduced to a single nonlinear equation
for the cross-section averaged velocity from which the one-dimensional temperature
distribution along the loop can be readily obtained. We show that the two-way interac-
tion between the velocity and temperature resulting from the temperature-dependent
material properties and Lorentz force leads to the result that the mean velocity as a
function of the control parameters is non-unique and involves bifurcations. For some
parameters we even observe freezing, which refers to a regime in which the fluid is
almost at rest. Our model reveals the role of temperature-dependent viscosity and
conductivity in glass melt flows in a pure form that is not visible in full numerical
simulations.

1. Introduction
Nowadays it is common to use mechanical stirrers or electric boosters to increase

convection in glass melting furnaces so as to enhance the mixing efficiency. Recently,
a novel approach to mixing enhancement, namely the simultaneous application of
electric currents and external magnetic fields with the purpose to create Lorentz
forces directly in the melt, has attracted attention (Osmanis, Snijedze & Aglitis 1987;
Hofmann & Thess 2002; Kunert et al. 2004). Experimental results (Hülsenberg et al.
2004) have demonstrated that these additional Lorentz forces can influence the glass
melt flow significantly and increase the homogenization. Numerical studies such
as those of Giessler & Thess (in press) reveal the influence of the Lorentz force
on the flow structure. However, such three-dimensional computations require long
simulation times and are restricted to a limited number of parameters. Moreover,
they fail to reveal the difference between the role of temperature-dependent viscosity
and temperature-dependent electrical conductivity.
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One possibility to perform extensive parameter studies and to obtain a deeper
understanding of the basic physics is to develop simplified models that can be studied
at low computational cost. The formulation of such a model is the goal of the present
paper. The large convection rolls which arise in the melting furnace due to the high
viscosity of the glass melt suggest to formulate such models on the basis of the
assumption that the fluid is confined to an annular loop which contains heating,
cooling and forcing zones. Such assumption enables us to study a one-dimensional
form of the fluid flow and obtain a better understanding of the flow behaviour in a
convection roll under the influence of external Lorentz forces.

More specifically, our present work is inspired by previous studies on natural
circulation loops, also called thermosyphons, which consist of at least one heat
source and one higher elevated heat sink connected by pipes. The convection in
such loops is driven by buoyancy. These systems have various important applications
in energy conservation systems, for example solar heaters and cooling systems of
nuclear reactors, and have been the subject of a large number of theoretical and
experimental studies. Reviews of the wide applications are given in Zvirin (1981) and
Greif (1988). This field of research was pioneered by Keller (1966) and Welander (1967)
who used natural circulation loops to model geothermal and geophysical processes.
The Lorentz-like chaotic alternations of flow directions were also experimentally
observed and theoretically analysed for example by Creveling et al. (1975) and
Ehrhard & Müller (1990). Besides the most common analytical approach to average
the governing equations over the pipe cross-section, Desrayaud, Fichera & Marcoux
(2006) performed a two-dimensional time-dependent analysis showing the influence
of radial components on the flow characteristic. In a few works, the fluid of the
loop was considered to be electrically conducting. In the presence of a transverse
magnetic field, eddy currents and a Lorentz force can be induced and can lead to a
damping of the motion. The study in Poddubnaya & Shaidurov (1969), performed
for two hydrodynamically connected vertical pipes heated from below, showed that
the onset of convection is a function of the magnetic flux density. Ghaddar (1998a, b)
studied the influence of the magnetic field density on the flow characteristic for similar
geometries over a wide range of parameters.

To our knowledge, no studies about the influence of temperature-dependent material
properties on the flow characteristics in a thermosyphon exist in the literature. Several
analytical models describing the laminar flow of magma (e.g. Ockendon & Ockendon
1977; Helfrich 1995; Wylie & Lister 1995; Morris 1996) glass melt (e.g. Lange &
Loch 2002; Giessler, Lange & Thess 2007) and polymers (e.g. Richardson 1986)
revealed that the temperature-dependent viscosity modifies the flow significantly. The
viscosity variations can lead to steady nonlinear flow characteristics, instabilities
and multiple-valued solutions even in simple geometries like channels or pipes.
Apart from the analytical approaches there have been experimental and numerical
investigations of Rayleigh–Bénard convection cells with large viscosity variations
which have been motivated by Earth’s mantle convection. Already the pioneering
works of Torrance & Turcotte (1971) and Booker (1976) followed by experiments
of Richter, Nataf & Daly (1983) and analyses of Morris & Canright (1984) and
Fowler (1985) show the modification of the spatial flow structures, heat transfer
and transitional regimes due to the temperature-dependent viscosity. For extremely
large viscosity variations a cold stagnant lid occupies most of the cold top boundary
layer. Almost isoviscous convection occurs beneath the stagnant lid. The studies on
the transitional regimes were numerically continued by Ogawa, Schubert & Zebib
(1991) for a three-dimensional configuration and have been extended for a wide
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range of Rayleigh numbers and viscosity contrast up to 1014 for a two-dimensional
square cell by Moresi & Solomatov (1995). The mentioned works about forced
convection in channels or pipes and free convection in bottom-heated cells show that
the investigation of the flow of a fluid with temperature-dependent viscosity in a loop,
even without Lorentz forces, represents a useful extension of natural circulation loops.

The present work is a direct continuation of our previous paper (Giessler et al. 2005)
which dealt with an analytical model for a circular loop including a Lorentz force
as an additional parameter. This model, like the present one, was motivated by the
convection of glass melt in a crucible under the influence of external Lorentz forces.
The Lorentz force in our previous work was generated by an electric current injected
directly into the melt and a perpendicularly acting magnetic field density, whereby
both fields were assumed to be independent of the flow in the loop. The fluid in the
loop was considered to be driven by strongly localized heating and cooling sections.
For a wide range of conditions, instabilities were found which led to multiple-valued
solutions. Furthermore, this model, in spite of its simplicity, revealed the significant
influence of the Lorentz force on the flow. However, this model did not include some
key attributes of convection rolls in glass melts, namely (i) the strong dependence of
viscosity and electrical conductivity on the temperature which, in practice, can lead
to variations by more than one order of magnitude; (ii) the non-circular shape of
the convection rolls (cf. the experiments by Hülsenberg et al. 2006 and the numerical
simulations of Giessler & Thess in press); and (iii) the absence of isothermal regions
in convection rolls.

We now focus on the mentioned characteristics (i)–(iii) for convection rolls of glass
melt and present a new model for the highly viscous fluid in a closed loop. Besides
the external Lorentz force we will study the influence of the variation of electrical
conductivity and viscosity on the flow. We will show how the geometrical features
of the loop – ranging from two hydrodynamically connected vertical branches to
almost circular loops – can modify the flow as well. The definition of our model
shall be described in § 2. The results are studied in § 3. We will discuss separately the
role of Lorentz force, temperature-dependent electrical conductivity and temperature-
dependent viscosity. Finally, we summarize the key results of this work and give some
concluding remarks in § 4.

2. Formulation of the problem
We consider a tube of circular cross-section with the uniform radius R and the

length L � R bent to a closed loop with two vertical branches of length l. The two
branches are connected by two circular arcs whose radius of curvature is denoted
by r as shown in figure 1(a). We define the coordinate s ∈ [0, L] with L = 2l + 2πr

as the arclength along the loop starting at the bottom of the right vertical branch.
The variability of the aspect ratio r/ l enables us to study loops of different shapes
including the limiting cases of two hydraulically connected vertical branches (r → 0
and l → L/2, see figure 1b) as well as a circular loop (l → 0 and r → L/2π, see figure 1c).

The loop is filled with a viscous fluid with constant heat capacity cP representing
molten glass. We invoke the generalized Boussinesq approximation and assume that
the density of the fluid is constant in all governing equations except for the buoyancy
term in the Navier–Stokes equation. Here it is assumed to depend linearly on
temperature and to obey ρ = ρ0(1−βθ), with β representing the expansion coefficient,
the temperature, and ρ0 being the density for θ = 0, θ > 0. This linearized equation
of state is a good approximation for glass melts. Our temperature scale is defined in
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Figure 1. Sketch of the considered problem for (a) a loop with two vertical branches of the
length l connected by two circular arcs with the arc radius r , (b) two hydrodynamically
connected vertical branches corresponding to the limit r → 0 and (c) a circular loop
corresponding to the limit l → 0. The dashed lines in (b) indicate the connection between
the two vertical parts by sections with zero hydraulic resistance.

such a way that its zero corresponds to the freezing temperature of the glass melt
under consideration. Although glass melts do not have a clearly defined freezing
point, the motivation for our choice θ = 0 as the freezing temperature will become
clear shortly. We parenthetically note that we use the term generalized Boussinesq
approximation in order to distinguish the present model which involves temperature-
dependent viscosity and electrical conductivity (to be discussed below) from the usual
meaning of the term Boussinesq approximation which implies that density is the only
temperature-dependent property.

Glass melt is characterized by highly nonlinear temperature-dependent viscosity
η(θ) and electrical conductivity σ (θ), where η(θ) is decreasing and σ (θ) is increasing
with temperature. In glass science and engineering it is common to express these
material parameters as exponential functions of temperature proportional to exp(1/θ)
(Vogel 1992). But other functions like for instance power laws fit the material property
data equally well. Hence, we are free to choose the functional form of η(θ) and σ (θ)
such that our analysis becomes most convenient. For reasons given below we use

η(θ) = η0

(
θ

θi

)m

, m � 0, (2.1)

with the viscosity parameters η0 and m depending on the glass type. The normalization
factor θi is set to 1 K to assure that η0, which does not have a physical meaning, is
measured in units of the viscosity. Since η → ∞ for θ → 0 it becomes clear that the
temperature θ =0 can be regarded as the freezing temperature of the melt. Hence,
the viscosity law (2.1) only makes sense for θ > 0. We further assume

σ (θ) = σ0

(
θ

θi

)n

, n � 0, (2.2)

again with constant parameters σ0 and n specific to the considered glass melt.
For m = n= 0 the fluid has a constant viscosity, η = η0, and a constant electrical
conductivity, σ = σ0, respectively. The advantage of our power laws is their convenient
algebraic handling when integrations are necessary. By contrast, the more common
models involving the temperature dependence exp(1/θ) do not yield to an analytic
integration.

On the right vertical branch of the loop, 0 � s � l, a constant electric current
density J0 = J0ex is applied and leads to a volumetric heat production according to
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J 2
0 /σ . This part of the loop is referred to as the heating zone. In the remaining part

of the loop, l � s � L, a constant heat transfer coefficient h is prescribed at the
pipe walls. Therefore, this branch is named cooling zone. The resulting temperature
gradient along s leads to buoyancy-driven convection in a counterclockwise direction.
We further assume that a time-independent external magnetic flux density B0 = B0ey ,
which is acting perpendicular to J0 in the right vertical branch, leads to a Lorentz
force density fL = J0B0ez in the melt. Depending on the direction of B0, the Lorentz
force either reinforces or counteracts the thermal convection. The Hartmann number
which characterizes the ratio between the induced electromagnetic forces and the
friction force (Davidson 2001) is assumed to be very small throughout the paper.
Then the induced current density is negligible in comparison to the applied current
density. Furthermore, we assume a low Brinkman number describing the relation
between viscous heating and fluid conduction. This assumption enables us to neglect
the effects of viscous dissipation on the energy balance.

The aim of this work is to derive a simplified model that predicts the cross-section
averaged velocity u and the cross-section averaged temperature distribution θ(s) in
the loop. Since we assume that our glass melt is incompressible, u does not depend
on s. By virtue of our assumption L � R, the one-dimensional model of the flow and
heat transfer to be derived below is expected to be sufficiently accurate, similar to
previous works, e.g. Welander (1967) and Ehrhard & Müller (1990).

In general, the steady low-Reynolds-number flow at hand is governed by the three-
dimensional Stokes equation including Lorentz force and the three-dimensional energy
equation. For L � R, however, these equations can be reduced to a mathematical
model that contains the coordinate s only. Since this approach has been extensively
used in the past, we will not present the full derivation of the model here and refer
the interested reader to the references Welander (1967), Ehrhard & Müller (1990),
Giessler et al. (2005) and Giessler et al. (2007). The tangential component of the
stationary cross-section averaged Stokes equation

dp

ds
= (fv + fb + fL) · es (2.3)

is the relevant source of information to derive our model. This equation expresses the
balance between the viscous fv , buoyancy fb and Lorentz fL force densities on the
one hand and the pressure gradient dp/ds on the other hand. es is the unit vector
tangential to the loop. Assuming a Poiseuille velocity profile, the viscous friction
force becomes fv = −8uη(θ(s))/R2es . The buoyancy force is given by the equation
fb = ρ0βgθ(s)ez, where g denotes the acceleration of gravity. The Lorentz force acts
only within the heating zone (0 � s � l) and reads fL = J0Boez. To eliminate the
pressure we integrate (2.3) from s = 0 to s = L. Making use of the uniqueness of the
pressure expressed by p(s + L) = p(s) we obtain

8u

R2

∫ L

0

η(θ(s)) ds = ρ0βg

∫ L

0

θ(s)ez · es ds + J0B0l. (2.4)

Equation (2.4) expresses the balance between the integrated viscous friction on the
left-hand side and the driving buoyancy and Lorentz forces on the right-hand side.
The integrated buoyancy term has to be evaluated separately for each branch as
buoyancy acts along the gravitational field in ez-direction. In detail the buoyancy
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term takes the form∫ L

0

θ(s)ez · es ds =

∫ l

0

θ(s) ds +

∫ l+πr

l

θ(s) cos

(
s − l

r

)
ds

−
∫ 2l+πr

l+πr

θ(s) ds −
∫ L

2l+πr

θ(s) cos

(
s − (2l + πr)

r

)
ds.

To derive an equation for the one-dimensional temperature distribution θ(s) the
heating and cooling zones have to be considered separately. In the heating zone there
is no heat loss to the environment. Instead the increase of the heat flux carried by
the mean flow is equal to the volumetric heating due to the Joule effect. Neglecting
effects of heat diffusion, the steady-state energy equation for the heating zone is thus

ρ0cP u
dθ

ds
=

J 2
0

σ (θ)
for s ∈ [0, l]. (2.5)

In the cooling zone the decrease of the heat flux carried by the mean flow is equal to
the heat loss through the sidewall. This is expressed by the differential equation

ρ0cP u
dθ

ds
= −2h

R
(θ − θ∞) for s ∈ [l, L], (2.6)

where θ∞ represents the ambient temperature and h being the heat transfer coefficient.
In the present work we set θ∞ = 0 to keep the model as simple as possible. With this
simplification our model is a good approximation for the behaviour of a streamline
which passes through the immediate vicinity of a (cold) outer wall of a melting crucible
which involves strong cooling. However, the present analysis can be generalized to
non-zero values of θ∞. Such a model would be appropriate to describe the behaviour
of an internal streamline with weak heat transfer. But non-zero values of θ∞ would
restrict us to a numerical treatment of the basic equations (2.4)–(2.6) instead of an
algebraic solution which is one goal of the present work and reachable with θ∞ = 0.

To match the first-order differential equations (2.5) and (2.6) the condition of
continuity between the cooling and heating zones at s =0 and s = l has to be fulfilled
for θ . Once these equations have been solved for θ(s) we are able to evaluate the
integrals in the Stokes equation (2.4), which then becomes an algebraic equation to
determine u.

We non-dimensionalize the governing equations (2.4)–(2.6) using the loop length L

as a measure for all geometric parameters, i.e.

s = s ′L, r = r ′L, l = l′L and R = R′L.

Furthermore, we use the following scales for the velocity u and temperature θ:

u = u′u0, with u0 =
8η0L

R2ρ0

and θ = θ ′θ0, with θ0 =

(
J 2

0 R2θn
i

8η0σ0cP

)1/(1+n)

.

After substituting these definitions in (2.4)–(2.6) and dropping the primes, we obtain
the Stokes equation in the form

u

∫ 1

0

θm(s) ds = Gr

∫ 1

0

θ(s)ez · esds + M, (2.7)

where

Gr =
βgρ2

0R
4θ0

64η2
0L

(
θ0

θi

)−m

(2.8)
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is the modified Grashof number which represents the ratio of the square of the viscous
diffusion time scale to the square of the free-fall velocity time scale. Moreover,

M =
J0B0lR

4ρ0

64η2
0L

2

(
θ0

θi

)−m

(2.9)

is the modified interaction parameter which can be regarded as the ratio of the
Lorentz force to the viscose force. Let us stress that Gr and M already include the
dependence of viscosity and electrical conductivity on temperature as these parameters
are proportional to (θ0/θi)

−m. The non-dimensional energy equation for the heating
zone becomes simply

u
dθ

ds
= θ−n, (2.10)

and the energy equation for the cooling zone becomes

u
dθ

ds
= −Nθ, (2.11)

where

N =
hR

4η0cP

(2.12)

is the wall heat loss parameter of the cooling zone. The integration of the non-
dimensional energy equations (2.10) and (2.11) gives the solution for the temperature
distribution

θ(s) =

[
(g exp ε)n+1 +

n + 1

u
s

]1/(n+1)

for s ∈ [0, l], (2.13)

θ(s) = g exp

{
−N

u
(s − l)

}
for s ∈ [l, 1], (2.14)

with

ε = −N

u
(2πr + l), g =

{
l(n + 1)

u(1 − (exp ε)n+1)

}1/(n+1)

.

The substitution of (2.13) and (2.14) in (2.7) leads, after some elementary calculations,
to the following algebraic form of the momentum equation

ugm

{
n + 1

n + m + 1
l
1 − (exp ε)n+m+1

1 − (exp ε)n+1
+

u

mN
[1 − (exp ε)m]

}

= Grg

{
Nr2/u

(Nr/u)2 + 1
[1 + exp ε1 − exp ε2 − exp ε] +

u

N
[exp ε2 − exp ε1]

+
n + 1

n + 2
l
1 − (exp ε)n+2

1 − (exp ε)n+1

}
+ M, (2.15)

with ε1 = exp(−Nrπ/u) and ε2 = exp(−N(rπ + l)/u)). Equation (2.15) expresses the
balance between the braking friction force on the left-hand side and the buoyancy and
Lorentz forces on the right-hand side. As Gr � 0, the buoyancy force drives the fluid
always into a counterclockwise direction which corresponds to u > 0. The interaction
parameter M can have both positive or negative sign. Therefore, the Lorentz force
reinforces buoyancy for M > 0 with u > 0 or counteracts the buoyancy when M < 0.
The algebraic equation (2.15) is our desired model which we can use to calculate the
velocity u as function of the modified Grashof number Gr , the interaction parameter
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Figure 2. Influence of the Lorentz force on a system with constant material properties
(n=m= 0) and l =0.25: the mean velocity u is plotted (a) as a function of the interaction
parameter M for different Grashof numbers Gr and (b) as a function of Gr . (c) The intersection
points of the buoyancy force fb and the Lorentz and friction force (fv + fL) give the solution
of our governing equation (2.15) for Gr = 2.64, 15, 30 and M = −1, −0.5, 0. Depending on M
we have one (�), two (�) or three (�) intersection points and therefore one, two or three
solutions for the velocity u for a given set of parameters. For M = 0 we have no Lorentz force
and for M > 0 and M < 0 Lorentz force and buoyancy act in the same and in the opposite
direction, respectively.

M , the cooling parameter N , the electrical conductivity parameter n, the viscosity
parameter m and the aspect ratio r/ l with 2πr + 2l = 1.

The rest of the paper is devoted to the treatment of (2.15). We apply a simple root
finding procedure on (2.15) to obtain u.

3. Results
The purpose of our investigation is to understand how buoyancy-driven flow of a

fluid with constant material properties is modified if (i) a Lorentz force is applied and
if (ii) the electrical conductivity and (iii) the viscosity become temperature-dependent.
In practice all these three effects are present simultaneously. However, we believe that
in order to develop a systematic understanding of the interplay of these effects, it is
preferable to study first the effect of Lorentz force on a fluid with constant material
properties and then investigate the effects of temperature-dependent conductivity and
viscosity separately. This will be done next.

3.1. Influence of Lorentz force on a system with constant material properties

First we investigate a system with constant material properties, n= m = 0, and study
the influence of the Lorentz force. In figure 2(a) the mean velocity u is given as
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a function of the interaction parameter M for different Grashof numbers Gr . If
we neglect buoyancy, Gr = 0, (2.15) reduces to u = M . This trivial solution which
corresponds to electromagnetically driven flow of an isothermal fluid is shown by the
dashed line in figure 2(a). The picture changes significantly if we ‘switch on’ buoyancy
(Gr > 0), as was already found in Giessler et al. (2005) for a circular loop. Indeed,
u(M) is now a multiple-valued function for some values of the interaction parameter.

Let us first consider a system with positive velocities. (Remember that positive
velocity corresponds to a flow in counterclockwise direction.) The key to the
understanding of this phenomenon is the observation that for small positive velocities
strong temperature gradients build up within the loop and lead to intensive buoyancy
forces. In order to highlight this effect we plot the non-dimensional buoyancy force as
a function of the velocity as a solid line in figure 2(c). This figure shows that fb has a
singularity for u =0. The singularity of the buoyancy force for u → 0 occurs for two
reasons, namely neglect of heat conduction along the loop and the linearized density–
temperature relationship used in the Boussinesq approximation. Indeed, since heat
cannot be conducted in longitudinal direction and cannot escape from the insulated
heating section, heat builds up without bound for u → 0 which leads to θ → 0. If
the exact relation ρ(θ) would have been used, ρ would tend to a small but finite
value as θ → ∞ leaving the buoyancy force finite. Since we use the linearized relation
ρ = ρ0(1 − βθ), instead, ρ → ∞ as θ → ∞ which gives rise to an infinite buoyancy
force. Consequently, the behaviour of u(Gr, M) in figure 2(a) should be considered as
non-physical in the limit M → ∞. If longitudinal heat conduction and non-Boussinesq
effects were taken into account, the branches u > 0 and u < 0 for large negative M

would be smoothly connected. Nevertheless, it is interesting to see that a Lorentz
force counteracting the buoyancy force cannot easily stop the flow. The solution u(M)
of (2.15) shown in figure 2(a) can be graphically interpreted as the intersection of the
curves fb and fv + fL as functions of u. As indicated in figure 2(c), an intensification
of the counteracting Lorentz force (M < 0) leads to a shift of the intersection points
along the right branch of fb, but not to a change of the flow direction.

Let us now look at the regime with large and negative velocities which evolves from
the dashed straight line in figure 2(a) for M < 0 if we switch on buoyancy. If we start
from strong negative M and decrease the magnitude of this parameter, the magnitude
of the mean velocity also decreases until the influence of buoyancy becomes relevant.
For u → 0 we find hot fluid just below and inside the heating zone and cold fluid
in the cooling zone, hence a large buoyancy force builds up acting opposite to the
flow direction. To obtain a stable system the driving Lorentz force has to increase
very strongly. As a result, we find a turning point in u(M) for u < 0, labelled as ‘a ’ in
figure 2(a). Altogether, for Gr > 0 the curve u(M) splits into two branches: One the
upper branch with u > 0, the velocity asymptotically reaches u → 0 for M → −∞ and
u = M for u → ∞. The lower branch with u < 0 runs from u =M for u → −∞ over the
turning point a to u → 0 for M → −∞. For M < M(a) three steady solutions for the
velocity can be found for one set of parameters. The velocity as a function of Lorentz
force was already studied in Giessler et al. (2005) for u � 0 and a circular loop. A
comparison shows that the results of both models agree quantitatively. The physical
behaviour is reproduced by both models. The results for negative velocities cannot
be compared as this parameter range has not been studied in Giessler et al. (2005).

The multiple-valued character of u for M < 0 can also be observed if the mean
velocity is plotted as a function of the Grashof number Gr as shown in figure 2(b).
The curve for M = −1 develops two turning points and there exists a range of Gr
numbers over which three steady states can be found. Between the two turning points
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we observe a counterintuitive behaviour – the magnitude of the clockwise buoyancy
force increases as well. On the upper branch we have u > 0 for all Gr > 0. On the
lower branch we have u < 0 as the clockwise acting Lorentz force is the dominating
driving force. Here the absolute value of the velocity decreases with Gr as buoyancy
increases until the turning point is reached. If we incidentally increase Gr , buoyancy
predominates fb >fL +fv and no equilibrium is reached (see e.g. figure 2c). The fluid
slows down, buoyancy increases as the temperature gradient increases and leads to
an amplification of the slow-down process. After the change of the flow direction
buoyancy decreases with velocity until the balance between the forces is reached. This
change of flow direction appears in u(Gr) as a jump from the inflexion point of the
lower branch with u < 0 to the upper branch with u > 0. The upper and the lower
branches of the curve u(Gr) are stable while the middle branch is unstable. This can
be explained with reference to figure 2(c) as follows. Consider a state located on
the downward sloping branch of the curve u(Gr) for M =1 which corresponds to
clockwise motion. Let us assume that an external perturbation leads to slight shift
of u in positive direction (i.e. from u to u + du with du > 0) which corresponds to a
weak ‘kick’ in counterclockwise direction. As the curve fb(u) in figure 2(c) shows, the
buoyancy force will then change from fb to fb + dfb with fb > 0. This implies that
the fluid will experience a force in positive (counterclockwise) direction which brakes
the clockwise motion further. This closed-loop interaction reinforces the deviation of
u from its initial state even further and signifies an unstable branch.

3.2. Temperature-dependent electrical conductivity

Now we turn our discussion to a circular loop, 2l � 1, with temperature-dependent
electrical conductivity, n> 0, and constant viscosity, m = 0. Figure 3(a) shows u as a
function of M for Gr =10 and various electrical conductivity parameters n. Let us
first note that the dashed curve with n= 0 in figure 3(a) and the curve for Gr = 10 in
figure 2(a) follow the same characteristics and pertain to similar physical situations.
However, the numerical values of both curves are not identical. This quantitative
difference originates from the reduction of the length of the heating zone from
l =0.25 (Gr = 10 in figure 2) to l =0.005 (n= 0 in figure 3) which leads to a reduction
of the heat input and, hence, to a reduction of buoyancy. As a result, the velocity
becomes smaller in a buoyancy dominated regime (e.g. M =0) and the turning point
shifts to velocities with a smaller magnitude for the present system with l = 0.005.

Furthermore, figure 3(a) shows that the temperature-dependent electrical conduc-
tivity leads to a dramatic change of the flow characteristic u(M). In the case M < 0
there are regions where there exist three solutions for u. Such a multiple-valued
solution can also be found if we plot u as function of the Grashof number Gr as
it is done in figure 3(b). If the Lorentz force acts against buoyancy, M < 0, and M

reaches a certain critical value, there is a range of Grashof numbers over which
three steady states can be found for positive velocities (see the curve with M = −1
in figure 3b). The curve develops two overturning points, which are labelled with
a and b in figure 3(b). We note that between these two points there are solutions
for which the velocity decreases as the Grashof number increases. Without Lorentz
forces, M = 0 (dashed line in figure 3b), u is a monotonic nonlinear function of Gr
and u increases with n as buoyancy increases (see figure 3a).

An explanation of the triple-valued solution can be given with the help of the
acting forces as functions of u. In figure 3(c) the sum of the braking friction and
Lorentz force fv + fL (dashed line) and the driving buoyancy fb (solid line) for
different Gr numbers are given. For u/|M | > 1 the friction force gives the dominating
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Figure 3. The flow characteristics u(Gr)(a) and u(Gr)(b) show the influence of the Lorentz
force on a nearly circular loop with l =0.005 and temperature-dependent electrical conductivity.
We have chosen the values for N =1 and (a) Gr = 10, (b) n= 2. For counteracting Lorentz
force, M < 0, multiple-valued solutions can be observed. (c) The intersection points of the
driving buoyancy force fb (—) and the braking forces friction and Lorentz fv + fL (- - -) with
M = −1.

contribution to the braking forces fv � fL with fv = u. For u/|M | < 1 we have fL = M

as the Lorentz force dominates, i.e. fL � fv . Interestingly, however, buoyancy fb(u)
turns out to be not a monotonically decreasing function of u. Instead, we find fb(u)
increasing with u for a certain limited range of u. Depending on Gr , which leads to
a shifting of the curve fb(u), we have one or three intersection points, as shown in
figure 3(c).

To reveal those parameters with dominant influence upon the characteristics of the
buoyancy force, let us study the asymptotic expression of fb(u) for u/N � 1. It can
be readily verified that this expression is

fb(u) =

(
l
n + 1

u

)1/(n+1) (
n + 1

n + 2
l +

u

N

)
. (3.1)

For l(n + 1)/(n + 2) � u/N we have fb ∼ u−1/(n+1). In this regime the fluid is cooled
down to the ambient temperature as soon as it enters the cooling section at s = l.
Therefore, we have ‘hot’ fluid in the heating zone and ‘cold’ fluid in the cooling zone.
Buoyancy is mainly determined by the temperature at the outlet of the heating section
θ(l), which scales as θ(l) ∼ u−1/(n+1) for all u/N � 1 as well. The temperature θ(l) –
and hence the buoyancy – decreases with increasing u as the heat input in the heating
zone decreases. As the heat input increases with n due to the stronger dependence
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Figure 4. The buoyancy force density fb as a function of the dimensionless velocity u is given
for various electrical conductivity parameters n and different lengths of the heating section,
namely (a) l = 0.05 and (b) l = 1e − 5. For n exceeding a critical value nc buoyancy increases
with u, whereas nc → 0 for circular loops with l → 0 (in b). In this case we find the relation
fb ∼ un/(n+1) for all n > nc (dotted lines).

of the electrical conductivity on temperature, the function θ(l, u) – and hence also
fb(u) – flattens with increasing n (see curves in figure 4a).

With the increase of u/N , we reach a regime, where the fluid is not cooled to
the ambient temperature as soon as it enters the cooling section. We find ‘warm’
fluid in the upper half-circle of the loop l � s � l + rπ/2 which gives an additional
contribution to the buoyancy force. Therefore, fb(u) flattens and the proportionality
fb ∼ u−1/(n+1) is left. If we now assume l � 1, the condition l(n+1)/(n+2) � u/N � 1
is satisfied and (3.1) simplifies to fb ≈ [l(n+1)/u]1/(n+1)u/N . For a nearly circular loop
we find an increase of buoyancy according to fb ∼ un/(n+1). In this case the additional
buoyancy in the circular arcs is larger than the reduction of buoyancy due to the
decrease of θ(l) with u.

This mechanism of increasing buoyancy is the result of the delicate interplay
between (i) temperature-dependent heat input, which is mainly described by n, (ii)
the aspect ratio of heating and cooling zones r/ l, with 2πr + 2l = 1, which can be
described by l, and (iii) the cooling rate, which is described by N . As the buoyancy in
the cooling section is proportional to the temperature reduction of exp(−N/u) and the
length of the circular arcs, and θ(l) ∼ u−1/(n+1), the electrical conductivity parameter n

needs to exceed a certain critical value nc for a given N and l. Figure 4(a) shows the
influence of n on fb for l = 0.05. For n<nc = 1.21 the curve fb(u) flattens, but fb(u)
does not increase with u. For n>nc fb(u) grows with u, but the relation fb ∼ un/(n+1)

is not fulfilled as we do not have l � 1. The case l =1e − 5 � 1, representing a
circular loop with nc = 2.38e − 3 (which is virtually zero), is given in figure 4(b).
The electrical conductivity only needs to depend slightly on temperature and we find
an increase of buoyancy. The scaling fb ∼ un/(n+1) is also fulfilled as indicated by
the dotted lines. In general, the smaller the l the smaller the nc as the influence of
buoyancy in the upper circular arcs increases. Besides the increase of buoyancy, we
need to have counteracting Lorentz force to obtain multiple solutions. We cannot
achieve three intersection points between buoyancy fb and friction fv as fv ∼ u and
the upper bound for the increase of fb is fb ∼ un/(n+1) with un/(n+1) <u. Therefore, the
intersection parameter M is an additional parameter which has influence on the onset
of the non-unique flow behaviour.
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Figure 5. The minimum electrical conductivity parameter nmin required to give multiple
solutions is plotted as function of the interaction parameter M for different values of the
length of the heating section l with N = 1. The dotted lines indicate nc for each l.

In order to better understand the parameter dependence of the bifurcations, we
have numerically evaluated the smallest electrical conductivity parameter nmin that
will give rise to multiple solutions as a function of the interaction parameter M

for various lengths of the heating section l. The results are shown in figure 5. For
l = 0.1 a strong nonlinear dependence of the electrical conductivity on temperature
and high absolute values of counteracting Lorentz forces |M | are required to achieve
non-unique behaviour. In contrast, for a nearly circular loop (l → 0), non-unique
solutions can be obtained for small nmin and small |M |. The dotted lines give the
critical value nc above which buoyancy increases with u. For M → − ∞ the minimum
electrical conductivity parameter nmin reaches nc for all values of l < 0.5.

3.3. Temperature-dependent viscosity

In the present subsection we concentrate our attention on a system with temperature-
dependent viscosity which is characterized by the condition m < 0. In this case only the
structure of the friction force changes from fv = u for m = 0 to fv = uf1(u, N, n, m)
for m < 0 with f1 ∼ 1 − exp(−N/u)m (see (2.15)). For about u/N < 10−3 the value
of exp(−N/u) is less than the smallest value we can represent with the used
code. Therefore, our studies for temperature-dependent viscosity are restricted to
u/N > 10−3.

If the regime of constant viscosity with m =0 is left, u(M) changes qualitatively as
shown in figure 6(a). For moderate m (e.g. m = −0.2) there is virtually no difference
between the temperature-dependent and the constant viscosity on the lower branch
with u < 0. By contrast, on the upper stable branch with u > 0 we find a turning
point such that u → 0 for M → +∞ and we have four values for u for one M . If the
dependence of viscosity on temperature is strong (e.g. m = −2), the graph resembles
a hyperbola. For a given Gr we need a certain |M | to obtain a solution.

To understand this observation, let us study the mean velocity u as function of
Gr for different viscosity parameters m and no Lorentz force (M = 0). Figure 6(b)
shows that the temperature-dependent viscosity separates the parameter space into
three regimes: (i) the freezing regime, (ii) the single-valued regime and (iii) the
double-valued regime. The single-valued regime – characterized by a single velocity
as solution for a given set of parameters – can only be obtained for a certain Grashof
numbers, which we also denote as the critical Grashof number Gr c. This point in
the parameter space forms the overturning point of u(Gr) and marks the onset of
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Figure 6. The dimensionless velocity u as a function of (a) the interaction parameter M with
Gr = 10 and (b) the Grashof number Gr for a system without Lorentz force M = 0 for different
values of the viscosity parameter m with n= 0, N = 1, l = 0.25. (c) The corresponding force
distribution for (b) of the the driving buoyancy fb (—) and braking friction force fv (- - -)
for Gr = 0.23 as function of u for different viscosity parameters m. As the friction force has a
parabolic-like profile we obtain two (�), one (�) or no intersection point between fb and fv .

convection. If the Grashof number exceeds this critical value, i.e. Gr >Gr c, we reach
the double-valued regime and obtain two velocities for one given Gr . Here, for large
velocities, u is an increasing function of Gr as it is known from thermal convection.
For small velocities, however, u decreases with increasing Gr . For Gr <Grc the model
does not give a solution at all. The phase diagram in figure 7 summarizes the region
of parameters for all three regimes (i)–(iii).

The reason for the freezing regime is the shape of the friction force given in
figure 6(c). For large velocities we have small temperature differences and therefore
small viscosity differences within the loop. The friction force is proportional to u. In
the case of small velocities the temperature in the cooling zone tends to θ → 0 and,
hence, the viscosity leads to η → ∞. Thus, the friction force fv strongly increases with
decreasing u. As a result fv(u) has a parabola-like shape with a minimum friction
force. As the buoyancy curve is monotonically decreasing with u depending on m and
Gr , we obtain two, one or no intersection point and therefore two, one or no solution
as shown in figure 6(c).

From the two intersection points only the right one is stable and hence, only the
upper branch of the two-valued solution is stable. Any u that is slightly above the
lower branch will drive the system to the upper stable branch while any u slightly
below the lower branch will initiate freezing of the system. Such freezing is not
necessarily a contraction. It has been observed for forced convection of glass melt
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in a pipe in industrial processing and was confirmed theoretically by Lange & Loch
(2002) and Giessler, Schlegel & Thess (in press). In practice freezing typically occurs
if the melt is cooled by room temperature (for which η → ∞) and if the velocity is
below a critical value. In a convection cell, a stagnant layer develops and the motion
shifts away from the cold walls. In glass processing such a behaviour is used in cold
induction crucibles to minimize corrosion at the crucible wall. As the fluid motion
in the model is restricted to a defined path, the loop cannot reflect the structural
modification of convection cells which is a limit of the thermosyphon approach, in
general. However, a second stable branch of u(Gr) (figure 6a) exists theoretically. We
would be able to calculate this branch, if η would have a finite value for θ∞. This
could be realized for example with the present viscosity law (2.1) and θ∞ > 0. In this
case the friction law fv(u) would obtain a third branch for u → 0 for which fv is a
linear function of u and one would obtain one to three intersection points.

4. Discussion
4.1. Summary

We have presented a one-dimensional model of laminar and steady glass melt flow
which we believe to approximate the behaviour of the velocity along a streamline in
a convection roll of a glass melt under the influence of external Lorentz force.

We have shown that for a wide range of interaction parameters M, the mean
velocity u is a linear function of M . Hence, due to this linearity, the externally
imposed Lorentz force can be used to control the velocity easily. Furthermore, we
identified regimes for which the solution of u changes from a single-valued one to
a multiple-valued one if we switch from pure buoyancy-driven convection to forced
convection due to additional external Lorentz force.

In addition, selected results reveal new effects of temperature-dependent material
properties on the flow. In the presence of external Lorentz forces the convection of
viscous fluids with temperature-dependent electrical conductivity in a circular loop
can lead to a novel type of instability. If the dependence of electrical conductivity
and the Lorentz force are sufficiently strong, three steady-state solutions can coexist,
two of them being stable and one unstable. We also have determined the mechanism
that underlies the non-uniqueness. For a viscous fluid with temperature-dependent
viscosity we observe three convective regimes: (i) a freezing regime for small Grashof
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numbers where the fluid is nearly immobilized, (ii) a single-valued regime, which
marks the onset of convection for a certain critical Grashof number Grc and (iii) a
double-valued regime for Gr >Grc in which two velocities can be assigned to one
Grashof number.

4.2. Comparison with numerical simulations

The present analytical loop model was motivated by electromagnetically controlled
glass melt flow in a laboratory crucible which was studied experimentally by
Hülsenberg et al. (2004) and Krieger (2007) and numerically by Giessler & Thess
(in press). Here we would like to compare results of the steady three-dimensional
simulations with results obtained by the loop model. Before doing this, let us briefly
introduce the three-dimensional setup and the adjustment of the model parameters.

Both the experiments by Hülsenberg et al. (2004) and the simulations by Giessler
& Thess (in press) have been performed for a cylindrical laboratory-scale crucible.
The crucible has a diameter of 0.08 m and is filled with molten glass up to a filling
height of 0.08 m. Two rod electrodes are symmetrically immersed from above up to
0.06 m into the melt and are supplied by a constant voltage U0. The super-imposition
of the current density in the melt with an externally applied magnetic field density
B0,3d leads to a Lorentz force density in the melt. The system is cooled by convection
at the crucible walls and by radiation at the free surface. The temperature of the
immediate surroundings is controlled to θ∞ =1393 K.

The reduction of the three-dimensional setup to the present one-dimensional loop
model requires the adjustment of the loop geometry parameter l, r and d , as well
as J0, B0 and h. A detailed description of the adjustment is given in Giessler (2008).
We have performed the calculations with the following loop geometry parameters:
length of the heating zone l =0.04 m, arc radius r = 0.02 m and inner diameter
of the pipe d = 0.02 m. Furthermore, we use a current density of J0 = 915.5 Am−2

which corresponds to U0 = 15 V in the numerical simulation. In the three-dimensional
setup the Lorentz force acts in the whole volume of the melt whereas it acts only in
the heating zone of our simplified loop model. Taking into account the geometrical
ratio l/r , we use a magnetic flux density, henceforth denoted as B0,1d , given by
B0,1d = 7.68B0,3d . Furthermore, the heat transfer coefficient h is set to 77 Wm−2K−1

as it approximates the heat transfer by convection at the crucible walls and radiation
at the free surface of the melt. For the material property laws we have chosen the
following equations:

η(θ) = 18.42[Pa · s] (θ[K])−0.635 , (4.1)

σ (θ) = 2.3 × 10−3[S m−1] (θ[K])1.472 , (4.2)

with θ being the offset temperature of the system. The numerical simulations
are performed with the common exponential formulations for η(θ) and σ (θ). A
comparison of both formulations is given in figure 8. For θ → θ∞ the experimentally
measured material properties have a finite, non-zero magnitude which is a large
deviation to the power-law formulations of the present model. In this case the
analytical model leads to an overestimation of the friction force, which is breaking
the flow. At the same time σ → 0 results in an overestimation of the heat input and
hence, an overestimation of the driving buoyancy force. Without performing detailed
calculations we can assume that both effects compensate each other and lead to
acceptable flow predictions. However, these large deviations are typically limited to a
small temperature range of a few Kelvin and strongly depend on n and m.
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Figure 9. Results of three-dimensional numerical simulations compared to results of the 1d
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simulation B0,3d are given. The results of the three-dimensional numerical simulation are given
in terms of one half of the maximum z -component of the velocity in the centreline of the

crucible uzmax/2 and the volume-averaged velocity u =
√∫

|u|2dV/V .

Figure 9 summarizes the result of the comparison of our model with the full three-
dimensional simulations performed in Giessler & Thess (in press). The calculations
for the present model with realistic glass melt parameters involve all the effects which
we have studied separately in § 3. The dashed line in figure 9(a) gives the mean loop
velocity as a function of the magnetic flux density. To compare velocity u of the present
model with the velocity of the three-dimensional simulation we use two different
quantities, namely u and uzmax/2. The velocity of the simulation is given in terms of

the volume-averaged velocity u =
√∫

|u|2dV/V and the maximum z -component of

the velocity in the centreline of the crucible uzmax/2. The maximum temperature θmax as
function of B0,3d is shown in figure 9(b) for both approaches. Overall, the comparison
between the results of the analytical loop model and the numerical simulation shows
a very good agreement. For B0,3d � 0 the curve u(B0,3d) which represents the present
model is located in between the numerical curves by uzmax/2(B0,3d) and u(B0,3d). This
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indicates that the simplified model is a good approximation to the full problem for
the parameter values at hand. The change of the slope of the upper branch during
the transition from a driving Lorentz force B0,3d > 0 to a breaking one B0,3d < 0 is
observed for uzmax and for the mean loop velocity u. Also for the clockwise flow
with u < 0 both approaches are in a very good agreement. Furthermore, we find
the multiple-valued regime in the steady numerical simulation which is predicted
by the loop model. The transition from a counterclockwise flow with uzmax > 0 to
a clockwise flow with uzmax < 0 results from a relocation and deformation of the
convection rolls due to the external Lorentz force. This relocation and deformation
cannot be reproduced by the analytical loop model as it represents a convection roll
with fixed dimension. Furthermore, in the loop the transition from u > 0 to u < 0 –
characterized by the turning point of the upper branch of u(B0) – happens due to
the temperature-dependent viscosity. As a result, the loop model cannot predict the
exact value of B0,3d for which the transition from uzmax > 0 to uzmax < 0 takes place
in the simulation. From the beginning we can exclude a ‘σ (θ)-induced’ bifurcation as
the dimensionless length is 0.194 and the conductivity parameter is set to n= 1.472.
To observe that kind of bifurcation n has to exceed a critical value of nc =7.52.

Also the curves θmax(B0,3d) are in very good agreement (see figure 9b) whereas the
right branches belong to u > 0 and the left branches belong to u < 0.

The reader may justifiably ask why the present model is not validated against the
experimental results of Hülsenberg et al. (2004). The reason for the absence of this
comparison is two-fold. First, there is no possibility of velocity measurements in the
experiments. Second, a comprehensive comparison of temperature fields is outside
the scope of the present paper and is the subject of ongoing work.

4.3. Outlook

The present loop model uses a power-law approach according to (2.1) and (2.2)
to model temperature-dependent viscosity and electrical conductivity. As the cooling
temperature θ∞ is set to zero, η → ∞ and σ → 0 for θ → θ∞. Hence, one has to carefully
verify the validity of the loop model for θ → θ∞. An obvious area of future work would
be the implementation of material property law for η(θ) and σ (θ) which would provide
finite non-zero values at θ∞. Vice versa the present potential formulation could lead
to finite non-zero values at θ∞ if the cooling temperature would be greater than zero,
θ∞ > 0. However, to our knowledge it is not possible to find a pure algebraic solution
for the loop model, which fulfills this requirements for η and σ and captures the
present thermal conditions – direct electrical heating according to the Joule effect
in the heating zone and convective heating in the cooling zone. The set of integro-
differential equations could only be used by applying a numerical procedure and
abandoning goal to achieve an algebraic description.

This work was supported by the Deutsche Forschungsgemeinschaft within the
framework of the Forschergruppe ‘Magnetofluiddynamik’. We thank D. Hülsenberg,
B. Halbedel, U. Lüdtke and U. Krieger for useful discussions.
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